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Abstract
In single-arm clinical trials with survival outcomes, the Kaplan–Meier estimator and its confidence interval are

widely used to assess survival probability and median survival time. Since the asymptotic normality of the
Kaplan–Meier estimator is a common result, the sample size calculation methods have not been studied in

depth. An existing sample size calculation method is founded on the asymptotic normality of the Kaplan–Meier

estimator using the log transformation. However, the small sample properties of the log transformed estimator
are quite poor in small sample sizes (which are typical situations in single-arm trials), and the existing method

uses an inappropriate standard normal approximation to calculate sample sizes. These issues can seriously

influence the accuracy of results. In this paper, we propose alternative methods to determine sample sizes
based on a valid standard normal approximation with several transformations that may give an accurate normal

approximation even with small sample sizes. In numerical evaluations via simulations, some of the proposed
methods provided more accurate results, and the empirical power of the proposed method with the arcsine

square-root transformation tended to be closer to a prescribed power than the other transformations. These

results were supported when methods were applied to data from three clinical trials.
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1. Introduction

In single-arm clinical trials with survival outcomes, the Kaplan–Meier estimator and its pointwise con-

fidence interval are widely used to assess survival probability at a specific time, as well as median

survival time. For instance, single-arm survival designs have been used in early phase studies for

metastatic colorectal cancer using molecular-targeted drugs [1] and advanced hepatocellular carcinoma

[2]. Progression-free survival is known as a validated surrogate endpoint for metastatic colorectal cancer,

and progression-free survival rate at a specified time is a frequently used endpoint in single-arm studies.

For advanced hepatocellular carcinoma, sorafenib was shown to have clear survival benefits, but it was

only associated with tumor response of 2–3%. Overall survival or progression-free survival rates are fre-
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quently used as the primary endpoint in single-arm studies of advanced hepatocellular carcinoma. These

designs have been used in other oncology studies. Single-arm survival designs have also been used in

studies could not include placebo administration, such as clinical trials for childhood and rare diseases

[3]. These studies are usually conducted with small sample sizes.

The asymptotic normality of the Kaplan–Meier estimator is well-known [4], and approximation is

quite poor with small sample sizes [5]. To resolve the issues of small sample size when inferring the

Kaplan–Meier estimator, several alternative methods have been suggested to construct confidence inter-

vals and hypothesis tests using transformations, such as the log transformation [5], the log-minus-log

transformation [6], the logit transformation [7], and the arcsine square-root transformation [8]. It is im-

portant to choose a suitable transformed statistic when calculating sample size in single-arm clinical trials

with survival outcomes because small sample sizes are common.

Since the asymptotic property of the Kaplan–Meier estimator has been extensively discussed, sam-

ple size methods have not been studied in depth. The commonly used standard sample size calculation

method by Cancer Research And Biostatistics [9] also uses an asymptotic normality assumption of the

Kaplan–Meier estimator with the log transformation. However, the performance of the log transformed

estimator is quite poor under the typical small sample conditions of these single-arm trials [5], and the

existing method uses an inappropriate standard normal approximation to calculate sample sizes to com-

pensate for the poor performance. These problems can influence the accuracy of results from sample

size calculations. An alternative approach that is based on the exact method has been proposed for the

small sample problem [10]. The exact method guarantees the type I error rate. However, the method is

commonly conservative when sample size is small. In addition, the method would be computationally

intractable when sample size is moderate (n > 20) because the method requires computing exact per-

mutation distributions. Several papers discussed about related topics (e.g., Wu and Xiong [11] discussed

about sample size methods about the Nelson–Aalen estimator and Wu [12] proposed alternative method

based on the one-sample log-rank test). However, the Kaplan–Meier estimator and its pointwise confi-

dence interval are widely used in practice. Thus, we focus on sample size methods for the Kaplan–Meier

estimator based on transformations.

In this article, we consider alternative sample size calculation methods for the Kaplan–Meier esti-

mator that use the transformations mentioned above and an appropriate standard normal approximation,

and we discuss their theoretical properties in Section 2. In Section 3, we assess the performance of the

existing and proposed methods in simulation studies because the small sample properties of hypothesis

tests based on the Kaplan–Meier estimator and sample size methods highly depend on the type of trans-

formations. We also demonstrate the effectiveness of the proposed method via simulation based on three

clinical trials in Section 4. The goal of this paper is to give recommendations to improve sample size

calculation methods for the Kaplan–Meier estimator in single-arm survival studies.

2. Sample size calculation methods for the Kaplan–Meier estimator

2.1 Asymptotic results of the Kaplan–Meier estimator

We considered asymptotic distributions of the Kaplan–Meier estimator [13], Ŝ(t), and its transformation,

g{Ŝ(t)}, with a function g(·). Let Ti for i = 1, . . . , n be a random variable with a survival time that

is distributed as a distribution function F (t), Ui be a random variable with a censoring time that is

distributed as a specific distribution function, Xi = min{Ti, Ui} be the observed time, δi = I(Ti < Ui)
be a censoring indicator, and I(·) be an indicator function with a value of 1 if its argument is true, and
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zero otherwise. At time t, the Kaplan–Meier estimator is defined as,

Ŝ(t) =
∏

s<t

{

1− ∆N̄(s)

Ȳ (s)

}

,

and its asymptotic variance estimator is defined as,

σ̂2(t) = Ŝ(t)2
∫ t

0

1

Ȳ (s){Ȳ (s)−∆N̄(s)}dN̄(s),

where N̄(t) =
∑n

i=1Ni(t), Ȳ (t) =
∑n

i=1 Yi(t), ∆X(t) = X(t) − X(t−), X(t−) = limh↓0X(t − h),
Ni(t) = I(Xi ≤ t, δi = 1) is a counting process that counts the number of failures (0 or 1) for the i-th in-

dividual, and Yi(t) = I(Xi ≥ t) is an at risk process that takes the value of 1 if the i-th individual is at risk

at time t and 0 otherwise. Let Λ(t) = − log S(t) =
∫ t

0
λ(s)ds be a cumulative hazard function, λ(t) =

− 1
S(t)

dS(t)
dt

be a hazard function, and Λ̂(t) =
∫ t

0
{Ȳ (t)}−1dN̄(s) be the Nelson–Aalen estimator [14, 15].

By the martingale central limit theorem, Ln(t) =
√
n{Λ̂(t)− Λ(t)} =

∫ t

0

√
n{Ȳ (s)}−1dM̄(t) →L L(t),

where M̄(t) = N̄(t) −
∫ t

0
Ȳ (s)λ(s)ds, L(t) is a Brownian motion with E[L(t)] = 0 and Var[L(t)] =

limn→∞〈Ln, Ln〉(t) =
∫ t

0
{P(U > s)S(s)}−1dΛ(s) [16]. The Kaplan–Meier and Nelson–Aalen estima-

tors have the relationship
√
n{Ŝ(t)−S(t)} =

√
n[exp{−Λ̂(t)}−exp{−Λ(t)}]+oP (1) [4]. By applying

the functional delta method, the asymptotic distribution of the Kaplan–Meier estimator can be obtained

as
√
n{Ŝ(t)− S(t)} →L −S(t)L(t) [17], and the asymptotic variance of the Kaplan–Meier estimator is

σ2(t) = Var[
√
n{Ŝ(t)−S(t)}] = S2(t)

∫ t

0
{P(U > s)S(s)}−1dΛ(s) [18]. Under small sample sizes, the

accuracy of the normal approximation of the Kaplan–Meier estimator is not sufficient, especially when

the value of the survival function is close to 0 or 1 [5]. Several transformations have been used to improve

its accuracy, which are defined as follows:

1. Identity transformation [13] (corresponds to an estimator for S(t)): g{S(t)} = S(t).

2. log transformation [5] (corresponds to an estimator for Λ(t)): g{S(t)} = log S(t).

3. log-minus-log transformation [6]: g{S(t)} = log{− log S(t)}.

4. logit transformation [7]: g{S(t)} = log[S(t){1− S(t)}−1].

5. arcsine square-root transformation [8]: g{S(t)} = arcsin
√

S(t).

Several studies recommend the log-minus-log [6], arcsine- [8], or both [5, 19], transformed confidence

intervals of the Kaplan–Meier estimator, since these have performed better than the identity and log

transformations. Borgan and Listøl [5] discussed why the transformed confidence intervals have better

small sample properties, finding that the transformed confidence intervals have a less skewed distribution

than non-transformed confidence intervals. Borgan and Listøl [5] also discussed the asymptotic normality

of transformations of the Kaplan–Meier estimator. This result is summarized as follows: Suppose that a

transformation g has the derivative g′ at the point S(t) and g′ is not zero, for 0 ≤ t ≤ T ; Then

√
n[g{Ŝ(t)} − g{S(t)}] →L g′{S(t)}{−S(t)L(t)}, (1)

and τ 2(t) = Var(
√
n[g{Ŝ(t)} − g{S(t)}]) = g′{S(t)}2σ2(t).

For each transformation, the derivative g′{S(t)} = dg{S(t)}
dS(t)

is as follows:
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1. identity transformation: g′{S(t)} = 1.

2. log transformation: g′{S(t)} = {S(t)}−1.

3. log-minus-log transformation: g′{S(t)} = {S(t) logS(t)}−1.

4. logit transformation: g′{S(t)} = [S(t){1− S(t)}]−1.

5. arcsine square-root transformation: g′{S(t)} = [4S(t){1− S(t)}]−1/2.

The variance τ 2(t) = g′{S(t)}2σ2(t) can be obtained by replacing g′{S(t)}2 by the appropriate term

above. It should be noted that the assumptions of the derivative will hold if 0 < S(t) ≤ 1 for the log

transformation, or 0 < S(t) < 1 for the log-minus-log, logit, and arcsine square-root transformations.

2.2 Proposed methods to determine sample size

We apply a straightforward sample size formula. Here, we consider one-sided hypotheses, H0 : ǫ ≤ 0,

and H1 : ǫ > 0, where ǫ = g{S1(t)} − g{S0(t)} is a transformed effect size, and S0(t) and S1(t) are

survival functions at time t under the null and alternative hypotheses. The analysis time t is a specific

time point and must be determined at the design stage. In general, time t is defined from a clinical

and/or statistical perspective. Annual survival probabilities (e.g., 6-month progression free survival, 1-

year overall survival, and so on) are widely used in practice by taking into account clinical importance

and high statistical power. We reject the null hypothesis at the type-I error rate α, if

Z =
g{Ŝ(t)} − g{S0(t)}

τ̂(t)/
√
n

> z1−α,

based on Z →L N(0, 1) as n → ∞ under the null hypothesis, where τ̂ (t) = g′{Ŝ(t)}σ̂(t), and

zp = Φ−1(p) is a standard normal quantile with a probability p. Under the alternative hypothesis Z
is approximately distributed as N(ǫ

√
n/τ1, 1) for large n, then the power is approximately given by

P (Z > z1−α |H1) ≈ Φ

(

−z1−α +
ǫ
√
n

τ1

)

,

where τ 2j = g′{Sj(t)}2σ2
j (t) for j = 0, 1 are the asymptotic variances under the null and alternative

hypotheses. To achieve the power of 1− β, we set

1− β = Φ

(

−z1−α +
ǫ
√
n1

τ1

)

.

The above result lead a sample size formula,

n1 =

{

τ1(z1−α + z1−β)

ǫ

}2

. (2)

We apply this formula to the transformations, g{S(t)}, mentioned in Section 2.1.
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2.3 Existing method to determine sample size

Practically, there is a method to determine sample size [9] that has been frequently used in one sample

survival studies. This method is based on the log transformation, g{S(t)} = log S(t). As noted above,

the log transformation has quite poor performance with small-sample sizes [5]. To estimate the sample

size, the formula

n2 =

(

τ1z1−α + τ0z1−β

ǫ

)2

, (3)

is used in the existing method [9]. By formula (3), it follows that

1− β = Φ

(

−τ1
τ0
z1−α +

ǫ
√
n2

τ0

)

.

Therefore, this sample size formula is based on the approximation,

P (Z > z1−α |H1) ≈ Φ

(

−τ1
τ0
z1−α +

ǫ
√
n

τ0

)

= P

(

τ0W + ǫ
√
n

τ1
> z1−α

)

,

where W ∼ N(0, 1). However, since τ0 6= τ1, (τ0W + ǫ
√
n)/τ1 does not distributed as N(ǫ

√
n/τ1, 1) but

as N(ǫ
√
n/τ1, τ

2
0 /τ

2
1 ) under the alternative hypothesis. This approximation is inappropriate. The existing

method may be likely designed to compensate for the poor performance of the log transformation. These

problems would possibly influence the accuracy of the results of the sample size calculations.

By the definitions of formulae (2) and (3), n1 = {(τ1z1−α + τ1z1−β)/ǫ}2 and n2 = {(τ1z1−α +
τ0z1−β)/ǫ}2. If the type-I error rate is properly controlled, then n2 will be over-estimated when τ0 > τ1
and n2 will be under-estimated when τ0 < τ1. For illustrative purposes, values of τ0/τ1 are shown in

Table 1 under a simple condition as follows: there is no random censoring and the analysis time t is

smaller than the follow-up time b. In particular, values of τ0/τ1 for the log transformation is greater than

1 (i.e., over-estimation) when S0(t) < S1(t), and less than 1 (i.e., under-estimation) when S0(t) > S1(t).
The same applies to power (i.e., over-estimation and under-estimation directly correspond over-power

and under-power, respectively), but note that assuming the type-I error rate is well controlled.

Table 1. Values of τ0/τ1 under no random censoring and t < b.

S0(t) S1(t) τ0/τ1
identity log log-log logit arcsin

0.1 0.2 0.75 1.50 1.05 1.33 1.00

0.3 0.4 0.94 1.25 0.95 1.07 1.00

0.5 0.6 1.02 1.22 0.90 0.98 1.00

0.7 0.8 1.15 1.31 0.82 0.87 1.00

0.8 0.7 0.87 0.76 1.22 1.15 1.00

0.6 0.5 0.98 0.82 1.11 1.02 1.00

0.4 0.3 1.07 0.80 1.05 0.94 1.00

0.2 0.1 1.33 0.67 0.95 0.75 1.00
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2.4 Calculating sample size for continuous and differentiable survival functions

In this sub-section, we consider the numerical computation of survival sample size formulae. Suppose

that S(t) is a parametric continuously differentiable function, with uniform accrual over time, and no loss

to follow-up, where t is the analysis time. Moreover, it is assumed that patients are uniformly recruited

during an accrual time a, follow-up time is b, and the total time is c = a + b. Then, the survival function

(i.e., the complementary cumulative distribution function) of the censoring random variable U is given

as,

P(U > t) =

{

1 0 < t ≤ b

a−1(c− t) b < t ≤ c
,

and the asymptotic variance of the Kaplan–Meier estimator is given by

σ2(t) =

{

S2(t)
∫ t

0
dΛ(s)
S(s)

0 < t ≤ b

S2(t)
∫ b

0
dΛ(s)
S(s)

+ S2(t)
∫ t

b
a

(c−s)S(s)
dΛ(s) b < t ≤ c

,

Since S(t) is continuous and differentiable, if 0 < t ≤ b (i.e., P(U > t) = 1), then

∫ t

0

dΛ(s)

S(s)
=

∫ t

0

−dS(s)

ds

1

{S(s)}2ds =
[

−{S(s)}−1
]t

0
+

∫ t

0

−2
dS(s)

ds

1

{S(s)}2ds

⇔
∫ t

0

−dS(s)

ds

1

{S(s)}2ds = −
[

−{S(s)}−1
]t

0
= −

{

− 1

S(t)
+

1

S(0)

}

= S−1(t)− 1,

by the definition of the survival function, S(0) = 1. In this case, we get

σ2(t) = S2(t){S−1(t)− 1} = S(t){1− S(t)}.

If the censoring probability, P(U > t), does not depend on t (i.e., 0 < t ≤ b), the asymptotic variance

corresponds to the variance of a Binomial distribution with the probability p = S(t). Thus, the proposed

method can be viewed as a natural extension of a Binomial sample size method. For the arcsine square-

root transformation, the asymptotic variance is τ 2(t) = g′{S(t)}2σ2(t) = [4S(t){1− S(t)}]−1S(t){1−
S(t)} = 1/4. It can be considered as a variance stabilizing transformation and a theoretical advantage of

the arcsine square-root transformation.

Now consider a more complicated case of b < t ≤ c. In this case, the survival function of the

censoring random variable U is a function of t (i.e., P(U > t) = a−1(c− t)), and numerical integration

is needed to compute the asymptotic variance. For example, assuming an exponential survival time

distribution, S(t) = exp(−λt), the asymptotic variance can be calculated by

σ2(t) = exp(−2λt)

[

{exp(λb)− 1}+
∫ t

b

aλ

(c− s) exp(−λs)
ds

]

.

Assuming an exponential survival function S(t) = exp(−λt), the hazard λ is constant over time and

can be calculated based on the relation λ = − logS(t)/t. Using the approach of Brookmeyer–Crowley

[20], the hazard can also be calculated based on the relation λ = − log(0.5)/M , where M is median

survival time. A web application implementing the proposed method that assumes an exponential survival

distribution is available at the first author’s website (http://nshi.jp/en/js/onesurvyr/ and

http://nshi.jp/en/js/onesurvmst/).
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3. Simulations

We conducted two sets of simulation studies to evaluate the performances of the existing and proposed

methods described in Section 2. In Simulation 1: type I error rate, we consider whether the transformed

Kaplan–Meier estimators can control type I error rate to a nominal level. In Simulation 2: power, we

consider whether the existing and proposed sample size formulae can control power to a prescribed

value.

3.1 Simulation 1: type I error rate of the transformed Kaplan–Meier estimators

First, we re-evaluated the type I error rates of tests based on the Kaplan–Meier estimator with trans-

formations (i.e., the identity, log, log-minus-log, logit, arcsine square-root transformations). One-sided

hypotheses, H0 : ǫ ≤ 0, and H1 : ǫ > 0, were considered.

We generated the survival time Xi of the i-th observation for i = 1, . . . , n from the exponential and

Weibull distributions, exp(λ), Weibull(λ, k = 0.5), or Weibull(λ, k = 2). The analysis time was set to

t = 12 months, accrual time was set to a = 24 months, and follow-up time was set to b = 12 months. The

null and alternative survival probabilities were set to S0(t) = S1(t) = 0.1, 0.2, . . . , 0.9. For Weibull dis-

tributions, the probability density and survival functions are defined as f(t) = λk(λt)k−1 exp{−(λt)k}
and S(t) = exp{−(λt)k}, so the hazard function was calculated from λ = {− logS(t)}1/k/t. We con-

sidered cases of type I censoring both with and without random censoring. For type I censoring, we

generated the observed accrual time of the i-th observation ai from a uniform distribution U(0, a) and

if ai + Xi > a + b then i-th observation was treated as a censored observation. For random censoring,

we generated the censoring time of the i-th observation Ui from exponential and Weibull distributions,

exp(4λ), Weibull(41/kλ, k = 0.5), or Weibull(41/kλ, k = 2) (i.e., from the same distribution with differ-

ent parameters as the survival time distribution), and if Ui > Xi then the i-th observation was treated as

a censored observation. The hazard functions with 4λ or 41/kλ correspond to an approximately 20% cen-

soring rate. The one-sided type I error rate was set to α = 5%, and the sample size was set to n = 25, 50,

or 100. For each setting, we simulated 1,000,000 replications. To assess the performance, the empirical

type I error was estimated by

P̂ =
{# of replications with confidence intervals not covering the null hypothesis S0(t)}

{# of replications (1, 000, 000)} . (4)

The type I error rates for the case with no random censoring are shown in Table 2. The type I

error rate for the log-minus-log was closest to the nominal level of 5%, except for a few of the cases

where S0(t) = 0.9. The logit and arcsine square-root transformations were generally quite close to the

nominal level of 5%, except for a few cases when S0(t) = 0.1, 0.7, or 0.9. The type I error rates for the

identity transformation were smaller than the nominal value of 5% when S0(t) = 0.1, and were larger

than the nominal value when S0(t) = 0.7 and 0.9. In the worst cases, the error rates were about 1%,

which is highly conservative, or about 10%, which is highly inflated. The type I error rates for the log

transformation were larger than the nominal value in all cases. They were inflated in almost all cases, and

the error rate was greater than 10% in the worst case.

Due to the non-parametric nature of the Kaplan–Meier estimator, exponential and Weibull survival

time distributions give similar results. Moreover, type I censoring, with or without random censoring,

also gives similar results (see Supporting Information Table S1), since the Kaplan–Meier estimator is

valid under both models.

In summary, the Kaplan–Meier estimator with log-minus-log, logit, arcsine square-root transforma-

tions controlled type-I error rates, and the type-I error rates of the Kaplan–Meier estimator with identity

and log transformations were conservative or inflated in many cases.
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Table 2. Simulation results for type I error rate; no random censoring was assumed.

Distribution Sample size S0(t) identity log log-log logit arcsine

Exponential 25 0.10 0.010 0.098 0.033 0.033 0.033

0.30 0.044 0.098 0.044 0.044 0.044

0.50 0.054 0.115 0.054 0.054 0.054

0.70 0.091 0.091 0.033 0.033 0.091

0.90 0.072 0.072 0.072 0.072 0.072

50 0.10 0.024 0.058 0.058 0.058 0.058

0.30 0.047 0.084 0.047 0.047 0.047

0.50 0.059 0.059 0.032 0.059 0.059

0.70 0.078 0.078 0.040 0.040 0.040

0.90 0.112 0.112 0.033 0.033 0.112

100 0.10 0.021 0.072 0.040 0.072 0.040

0.30 0.053 0.053 0.053 0.053 0.053

0.50 0.044 0.066 0.044 0.044 0.044

0.70 0.075 0.075 0.048 0.048 0.048

0.90 0.117 0.117 0.024 0.024 0.057

Weibull(λ, k = 0.5) 25 0.10 0.009 0.098 0.033 0.033 0.033

0.30 0.044 0.098 0.044 0.044 0.044

0.50 0.054 0.115 0.054 0.054 0.054

0.70 0.090 0.090 0.033 0.033 0.090

0.90 0.072 0.072 0.072 0.072 0.072

50 0.10 0.024 0.058 0.058 0.058 0.058

0.30 0.048 0.085 0.048 0.048 0.048

0.50 0.060 0.060 0.032 0.060 0.060

0.70 0.078 0.078 0.040 0.040 0.040

0.90 0.112 0.112 0.034 0.034 0.112

100 0.10 0.020 0.072 0.040 0.072 0.040

0.30 0.053 0.053 0.053 0.053 0.053

0.50 0.044 0.066 0.044 0.044 0.044

0.70 0.075 0.075 0.048 0.048 0.048

0.90 0.117 0.117 0.024 0.024 0.058

Weibull(λ, k = 2) 25 0.10 0.010 0.098 0.033 0.033 0.033

0.30 0.044 0.098 0.044 0.044 0.044

0.50 0.054 0.115 0.054 0.054 0.054

0.70 0.091 0.091 0.033 0.033 0.091

0.90 0.072 0.072 0.072 0.072 0.072

50 0.10 0.024 0.058 0.058 0.058 0.058

0.30 0.048 0.085 0.048 0.048 0.048

0.50 0.060 0.060 0.033 0.060 0.060

0.70 0.079 0.079 0.040 0.040 0.040

0.90 0.112 0.112 0.034 0.034 0.112

100 0.10 0.020 0.072 0.040 0.072 0.040

0.30 0.053 0.053 0.053 0.053 0.053

0.50 0.044 0.067 0.044 0.044 0.044

0.70 0.076 0.076 0.048 0.048 0.048

0.90 0.118 0.118 0.024 0.024 0.058

Values not within a range of type I error rate less than α = 0.05 plus 0.02 are highlighted

in bold.
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3.2 Simulation 2: power of the sample size methods

In this section, we evaluated the power of the existing method for determining sample size described in

Section 2.3 and the proposed methods described in Section 2.2.

We generated the survival time Xi of the i-th observation for i = 1, . . . , n from the exponential and

Weibull distributions, exp(λ), Weibull(λ, k = 0.5), or Weibull(λ, k = 2). The analysis time was set to

t = 12 months, accrual time was set to a = 24 months, and follow-up time was set to b = 6 or 12 months.

The null and alternative survival probabilities were set to S0(t) = 0.1, 0.4, or 0.7 and S1(t)−S0(t) = 0.1.

We also considered both cases of type I censoring with or without random censoring. The one-sided type

I error rate was set to α = 5%, or 10%, and the power was set to 1 − β = 80%, or 90%. The sample

sizes were calculated from equation (3) (i.e., the existing method) and (2) for the log transformation, and

only from equation (2) for the other transformations. The same transformation was used to determine

sample sizes and estimate intervals for the survival function. For each setting, we simulated 1,000,000

replications. To assess the performance of the sample size methods, the empirical power under the

calculated sample size was estimated by (4).

The power for the α = 0.05, 1−β = 0.8, and exponential survival distribution case is shown in Table

3. The sample sizes based on each method were substantially different. The largest difference among

transformations was between the identity and log transformations with b = 6, S0(t) = 0.1, and with

random censoring (difference of 69). The power for the proposed method with the arcsine transformation

was closest to the prescribed values of 80% or 90%. The existing method (i.e., formula (3) with the log

transformation) had a good performance, but this result is not consistent with the results of the type I error

rate. The power for the proposed method with the identity transformation was larger than the prescribed

values when S0(t) = 0.1, and tended to be smaller than the prescribed values when S0(t) = 0.7. The

power for the proposed method with the log transformation was substantially smaller than the prescribed

values in all cases. This result reflects the type I error rate inflation of the log transformation. The power

values for the proposed method with the log-minus-log and logit transformation were smaller than the

prescribed values when S0(t) = 0.1 and were larger than the prescribed values when S0(t) = 0.7.

Similar to the case of the type I error rates, the exponential and Weibull survival time distributions

gave similar results, and type I censoring with or without random censoring also gave similar results (see

Supporting Information Tables S2–S7).

In summary, the proposed method with the arcsine square-root transformation was able to maintain

the prescribed power in almost all cases. The existing method was second best, but since the type I error

rate of the log transformation was inflated, it is not acceptable for sample size calculation. The other

methods were not able to control power to the prescribed levels. Moreover, it is dangerous to use the

identity and log transformations, since the type I errors were inflated.

Source code to reproduce the results is available as Supporting Information.

4. Applications to clinical trials

We applied the sample size methods to data from three clinical trials [21, 22, 23]. In reference to the three

trials, the simulation conditions for each study were determined to evaluate the empirical performance of

the methods for determining sample size under realistic scenarios:

(i) [21]: The primary endpoint was progression free survival at the analysis time t = 3 months, accrual

time was set to a = 22 months, and follow-up time was set to b = 4 months. The null and

alternative survival probabilities were set to S0(t) = 0.50 and S1(t) = 0.70. The one-sided type

I error rate was set to α = 5%, and the power was set to 1 − β = 90%. In the actual study, 50

assessable participants were planned using the existing method [9].
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Table 3. Simulation results for power simulation (α = 0.05 and 1− β = 0.8); exponential survival

distribution was assumed.

Random b S0(t) S1(t) Sample size Empirical power

censoring ident. log log (3) log-log logit arcsin ident. log log (3) log-log logit arcsin

without 12 0.1 0.2 99 52 71 75 59 77 0.861 0.739 0.786 0.761 0.769 0.794

0.4 0.5 155 125 144 166 151 153 0.789 0.762 0.820 0.803 0.792 0.791

0.7 0.8 99 87 106 142 134 115 0.755 0.719 0.791 0.857 0.845 0.795

6 0.1 0.2 111 58 80 84 66 86 0.832 0.716 0.814 0.784 0.739 0.785

0.4 0.5 170 136 158 181 165 167 0.801 0.760 0.808 0.815 0.798 0.799

0.7 0.8 107 94 115 153 144 125 0.777 0.755 0.818 0.850 0.838 0.809

with 12 0.1 0.2 129 67 98 97 77 100 0.832 0.713 0.829 0.782 0.740 0.785

0.4 0.5 171 137 161 183 166 169 0.802 0.761 0.813 0.818 0.798 0.801

0.7 0.8 102 90 110 146 137 119 0.779 0.762 0.822 0.851 0.839 0.811

6 0.1 0.2 145 76 111 109 87 113 0.861 0.747 0.856 0.812 0.773 0.817

0.4 0.5 188 151 178 201 183 185 0.841 0.801 0.852 0.855 0.839 0.839

0.7 0.8 111 97 119 158 149 129 0.804 0.781 0.843 0.874 0.864 0.835

Values not within a range of 1− β = 0.8, plus or minus 0.03 are highlighted in bold.

ident.: the identity transformation based on equation (2); log: the log transformation based on equation (2); log (3): the log transformation

based on equation (3), i.e., the existing method; log-log: the log-log transformation based on equation (2); logit: the logit transformation

based on equation (2); arcsin: the arcsine square-root transformation based on equation (2).

Table 4. Power simulation results based on three clinical studies; exponential survival distribution and

no random censoring were assumed.

Study 1− β Sample size Empirical power
actual ident. log log (3) log-log logit arcsin ident. log log (3) log-log logit arcsin

(i) 0.90 50 45 33 50 66 57 51 0.901 0.839 0.915 0.935 0.938 0.899
(ii) 0.82 70 73 53 68 83 73 73 0.805 0.768 0.830 0.872 0.805 0.805
(iii) 0.90 37 35 18 32 38 29 32 0.913 0.761 0.945 0.929 0.868 0.893

Values not within a range of 1− β = 0.90, 0.82, or 0.90, plus or minus 0.02 are highlighted in bold.
actual: planned sample sizes in the actual studies; ident.: the identity transformation based on equation (2); log: the log transformation based
on equation (2); log (3): the log transformation based on equation (3), i.e., the existing method; log-log: the log-log transformation based on
equation (2); logit: the logit transformation based on equation (2); arcsin: the arcsine square-root transformation based on equation (2).
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(ii) [22]: The primary endpoint was overall survival at the analysis time t = 18 months, accrual time

was set to a = 27 months, and follow-up time was set to b = 18 months. The null and alternative

survival probabilities were set to S0(t) = 0.40 and S1(t) = 0.55. The one-sided type I error rate

was set to α = 5%, and the power was set to 1 − β = 82%. In the actual study, 70 patients were

enrolled, and the method used to determine sample size was not reported in the article.

(iii) [23]: The primary endpoint was progression free survival at the analysis time t = 6 months, accrual

time was set to a = 23 months, and follow-up time was set to b = 6 months. The null and

alternative survival probabilities were set to S0(t) = 0.25 and S1(t) = 0.50. The one-sided type

I error rate was set to α = 5%, and the power was set to 1 − β = 90%. In the actual study, 37

assessable participants were planned using a Simon 2-stage optimal design.

We generated the survival time Xi of the i-th observation for i = 1, . . . , n from an exponential

distribution, exp(λ). We considered type I censoring without random censoring. Other settings were the

same as those described in Section 3.2.

The power values for the exponential survival distribution and no random censoring case are shown

in Table 4. The results described in Tables 3 and 4 are similar. The power for the proposed method with

the arcsine transformation was closest to the prescribed values. The power for the proposed method with

the identity transformation and the existing method, which is slightly inflated in study (iii), were next

best. The power for the proposed method with the log transformation was substantially smaller than the

prescribed values in all cases. The power values for the proposed method with the log-minus-log and

logit transformations were smaller than the prescribed values in some cases and larger in others. There

are some differences between the sample size of the actual studies and those described in Table 4. It is

notable that the study (iii) applied a Binomial sample size method with an interim analysis. We shall

discuss this in Section 5.

5. Discussions

Since the asymptotic distribution of the Kaplan–Meier estimator is a well-known result, methods for

determining sample size have generally not been discussed and have remained unclear. The existing

method for determining sample size has a theoretical problem because it uses an inappropriate standard

normal approximation. We have presented an alternative sample size formula based on an appropriate

approximation.

Our simulation results confirmed previous results [5] that the type I error rates of the identity and

log transformation are inflated or conservative, and we found that the power of the proposed method

using the arcsine square-root transformation was closest to the prescribed power. Several survival time

distributions and censoring types gave similar results. The existing method based on formula (3), which

uses the log transformation, seemed second best, but the result was not consistent with its type I error

rate. Since the type I error rate of the log transformation was highly inflated, it is expected that calculated

sample sizes are small. As a result, the power of the existing method should be smaller than the prescribed

values. However, the calculated sample sizes of the formula (3) are slightly larger than expected, and it is

a cause of the inconsistency. The log transformation leads to serious type I error inflation, so this method

is not recommended for most applications.

The single-arm survival design is often used in early-phase oncology studies and clinical trials for

relatively severe or rare diseases such as metastatic colorectal cancer, advanced hepatocellular carcinoma,

and childhood disease. False positive findings due to the type I error inflation of the existing method could

lead to an unnecessary large-scale phase III trial, and it could raise serious ethical issues. By contrast, the
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proposed method using the arcsine square-root transformation achieved a prescribed level of power, and

the type I error rate of the arcsine square-root transformation was not inflated in most cases. Alternatively,

the proposed method using the log-minus-log transformation would be an option to strictly control the

type I error rate. Therefore, considering such ethical issues, we recommend this proposed method in

practice because of its accuracy.

We have described related sample size formula for the cases of continuous and differentiable survival

functions. If the censoring probability does not depend on t, then the asymptotic variance corresponds

to the variance of a Binomial distribution with the probability p = S(t). The proposed method can be

viewed as a natural extension of Binomial sample size methods. Sample size methods based on a Bino-

mial distribution such as the Fleming single-stage design [24] and Simon’s two stage design [25] are often

used in oncology studies. Using the assumptions of censoring probability described above, the use of the

arcsine square-root transformation is also recommended for Fleming single-stage designs. Although the

Simon’s two stage design considers an interim analysis at a time tm < t, the assumption does not hold at

tm in general. Particular attention is required when applying Binomial sample size methods in single-arm

survival studies. Moreover, we showed that the arcsine square-root transformation can be considered as

a variance stabilizing transformation when the censoring probability does not depend on t. The simu-

lation results were consistent with the theoretical advantages of the arcsine square-root transformation.

Thomas and Grunkemeier [8] also suggested the use of the arcsine-square root transformation to improve

the small sample properties of confidence intervals for survival functions. The confidence interval based

on the arcsine square-root transformation has an acceptable performance even with small sample sizes

[5, 19].

We mainly discussed about sample size formula for the survival proportion at time t as a summary

measure. Other measures such as the median survival time and mean survival time are also commonly

used. As noted in Section 2.4, the proposed method can be easily extended to median survival time by

using the Brookmeyer–Crowley [20] approach. Further research will be needed to extend to restricted

mean survival time [26, 27]. It will also be necessary to carefully consider the issue of small samples

[28, 29].

The default settings used in statistical software should be considered. S-PLUS and R use log transfor-

mation as default, and SAS and Stata use the log-minus-log transformation [30]. Therefore, researchers

should be careful when using the confidence intervals for the Kaplan–Meier estimator, especially when

using S-PLUS and R, because the type I error rate will be inflated.

In conclusion, we showed that the proposed sample size calculation method using the arcsine square-

root and log-minus-log transformations work well for single-arm survival studies, even with small sample

sizes which are typical in single-arm trials, a case of a non-exponential survival function, and a case of a

complex censoring distribution.
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Supplementary Tables

Table S1. Simulation results for type I error rate: random censoring was assumed.

Table S2. Simulation results for power: exponential survival distribution and no random censoring were

assumed.

Table S3. Simulation results for power: Weibull(λ, k = 0.5) survival distribution and no random cen-

soring were assumed.

Table S4. Simulation results for power: Weibull(λ, k = 2) survival distribution and no random censor-

ing were assumed.

Table S5. Simulation results for power: exponential survival distribution and no random censoring were

assumed.

Table S6. Simulation results for power: Weibull(λ, k = 0.5) survival distribution and random censoring

were assumed.

Table S7. Simulation results for power: Weibull(λ, k = 2) survival distribution and random censoring

were assumed.
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Table S1. Simulation results for type I error rate: random censoring was assumed.
Distribution Sample size S0(t) identity log log-log logit arcsine
Exponential 25 0.10 0.024 0.084 0.046 0.070 0.045

0.30 0.044 0.079 0.039 0.055 0.049
0.50 0.062 0.085 0.037 0.046 0.055
0.70 0.096 0.107 0.035 0.041 0.056
0.90 0.075 0.075 0.075 0.075 0.075

50 0.10 0.026 0.074 0.046 0.065 0.044
0.30 0.043 0.070 0.042 0.054 0.048
0.50 0.056 0.074 0.041 0.049 0.052
0.70 0.070 0.086 0.039 0.046 0.056
0.90 0.118 0.118 0.022 0.031 0.104

100 0.10 0.029 0.067 0.047 0.061 0.045
0.30 0.044 0.064 0.045 0.053 0.048
0.50 0.053 0.066 0.044 0.049 0.051
0.70 0.064 0.072 0.042 0.046 0.055
0.90 0.088 0.108 0.026 0.026 0.062

Weibull(λ, k = 0.5) 25 0.10 0.024 0.084 0.046 0.070 0.045
0.30 0.044 0.079 0.039 0.055 0.049
0.50 0.062 0.085 0.037 0.046 0.055
0.70 0.096 0.106 0.034 0.040 0.056
0.90 0.075 0.075 0.075 0.075 0.075

50 0.10 0.025 0.074 0.046 0.064 0.044
0.30 0.043 0.070 0.042 0.054 0.048
0.50 0.056 0.073 0.041 0.049 0.052
0.70 0.070 0.085 0.039 0.046 0.056
0.90 0.117 0.117 0.022 0.031 0.104

100 0.10 0.029 0.067 0.047 0.061 0.044
0.30 0.044 0.064 0.045 0.053 0.049
0.50 0.053 0.067 0.044 0.050 0.052
0.70 0.064 0.072 0.042 0.046 0.055
0.90 0.088 0.108 0.026 0.026 0.063

Weibull(λ, k = 2) 25 0.10 0.024 0.085 0.046 0.071 0.045
0.30 0.044 0.079 0.039 0.055 0.049
0.50 0.062 0.086 0.037 0.047 0.056
0.70 0.096 0.107 0.035 0.041 0.057
0.90 0.075 0.075 0.075 0.075 0.075

50 0.10 0.026 0.073 0.046 0.064 0.044
0.30 0.043 0.070 0.042 0.054 0.048
0.50 0.056 0.074 0.041 0.049 0.053
0.70 0.070 0.086 0.039 0.046 0.056
0.90 0.117 0.117 0.022 0.031 0.103

100 0.10 0.029 0.067 0.047 0.060 0.044
0.30 0.044 0.064 0.044 0.053 0.048
0.50 0.053 0.066 0.044 0.050 0.051
0.70 0.064 0.072 0.043 0.047 0.055
0.90 0.088 0.108 0.026 0.026 0.062

Values not within a nominal range of type I error rate less than α = 0.05 + 0.02 are highlighted in

bold.
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Table S2. Simulation results for the power: exponential survival distribution and no random censoring were assumed.

b S0(t) S1(t) α 1− β
Sample size Empirical power

ident. log log (2) log-log logit arcsin ident. log log (2) log-log logit arcsin
12 0.1 0.2 0.05 0.80 99 52 71 75 59 77 0.861 0.739 0.786 0.761 0.769 0.794

0.10 0.80 73 38 54 55 43 56 0.817 0.660 0.780 0.798 0.784 0.815
0.05 0.90 138 72 106 104 82 107 0.939 0.802 0.921 0.907 0.861 0.884
0.10 0.90 106 55 86 80 63 82 0.921 0.798 0.901 0.900 0.836 0.916

12 0.4 0.5 0.05 0.80 155 125 144 166 151 153 0.789 0.762 0.820 0.803 0.792 0.791
0.10 0.80 113 91 108 121 110 112 0.826 0.735 0.806 0.818 0.804 0.802
0.05 0.90 215 172 208 229 209 212 0.890 0.874 0.906 0.907 0.893 0.904
0.10 0.90 165 132 164 176 160 163 0.894 0.871 0.908 0.924 0.911 0.895

12 0.7 0.8 0.05 0.80 99 87 106 142 134 115 0.755 0.719 0.791 0.857 0.845 0.795
0.10 0.80 73 64 80 103 97 84 0.805 0.803 0.837 0.832 0.851 0.773
0.05 0.90 138 121 155 196 185 160 0.893 0.836 0.931 0.949 0.938 0.898
0.10 0.90 106 93 123 150 142 123 0.899 0.845 0.906 0.934 0.929 0.906

6 0.1 0.2 0.05 0.80 111 58 80 84 66 86 0.832 0.716 0.814 0.784 0.739 0.785
0.10 0.80 81 43 61 61 48 63 0.829 0.718 0.812 0.781 0.736 0.784
0.05 0.90 154 80 120 116 92 120 0.929 0.814 0.917 0.885 0.843 0.890
0.10 0.90 118 62 97 89 70 92 0.926 0.816 0.918 0.884 0.840 0.888

6 0.4 0.5 0.05 0.80 170 136 158 181 165 167 0.801 0.759 0.808 0.815 0.798 0.799
0.10 0.80 124 100 118 132 120 122 0.801 0.763 0.809 0.814 0.797 0.799
0.05 0.90 235 189 228 251 228 232 0.900 0.862 0.910 0.914 0.897 0.899
0.10 0.90 180 145 180 193 175 178 0.900 0.863 0.912 0.913 0.897 0.899

6 0.7 0.8 0.05 0.80 107 94 115 153 144 125 0.777 0.755 0.818 0.850 0.838 0.809
0.10 0.80 78 69 87 112 105 91 0.779 0.761 0.823 0.850 0.838 0.809
0.05 0.90 149 130 168 212 200 173 0.878 0.853 0.918 0.939 0.931 0.906
0.10 0.90 114 100 134 163 153 132 0.879 0.858 0.921 0.938 0.929 0.905

Values not within a prescribed range of 1− β = 0.8 or 0.9, plus or minus 0.03 are highlighted in bold.

ident.: the identity transformation based on equation (3); log: the log transformation based on equation (3); log (2): the log transformation based on

equation (2); log-log: the log transformation based on equation (3); logit: the logit transformation based on equation (3); arcsin: the arcsine square-root

transformation based on equation (3).
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Table S3. Simulation results for power: Weibull(λ, k = 0.5) survival distribution and no random censoring were assumed.

b S0(t) S1(t) α 1− β
Sample size Empirical power

ident. log log (2) log-log logit arcsin ident. log log (2) log-log logit arcsin
12 0.1 0.2 0.05 0.80 99 52 71 75 59 77 0.861 0.739 0.786 0.761 0.769 0.794

0.10 0.80 73 38 54 55 43 56 0.817 0.660 0.780 0.798 0.784 0.815
0.05 0.90 138 72 106 104 82 107 0.939 0.802 0.921 0.907 0.861 0.884
0.10 0.90 106 55 86 80 63 82 0.921 0.798 0.901 0.900 0.836 0.916

12 0.4 0.5 0.05 0.80 155 125 144 166 151 153 0.789 0.762 0.820 0.803 0.792 0.791
0.10 0.80 113 91 108 121 110 112 0.826 0.735 0.806 0.818 0.804 0.802
0.05 0.90 215 172 208 229 209 212 0.890 0.874 0.906 0.907 0.893 0.904
0.10 0.90 165 132 164 176 160 163 0.894 0.871 0.908 0.924 0.911 0.895

12 0.7 0.8 0.05 0.80 99 87 106 142 134 115 0.755 0.719 0.791 0.857 0.845 0.795
0.10 0.80 73 64 80 103 97 84 0.805 0.803 0.837 0.832 0.851 0.773
0.05 0.90 138 121 155 196 185 160 0.893 0.836 0.931 0.949 0.938 0.898
0.10 0.90 106 93 123 150 142 123 0.899 0.845 0.906 0.934 0.929 0.906

6 0.1 0.2 0.05 0.80 107 56 76 80 64 83 0.834 0.717 0.811 0.782 0.746 0.788
0.10 0.80 78 41 59 59 46 61 0.831 0.721 0.814 0.782 0.736 0.790
0.05 0.90 147 77 115 111 88 115 0.928 0.815 0.918 0.885 0.843 0.890
0.10 0.90 113 59 93 85 67 88 0.927 0.814 0.919 0.883 0.841 0.888

6 0.4 0.5 0.05 0.80 163 131 152 175 159 161 0.800 0.760 0.809 0.817 0.798 0.799
0.10 0.80 119 96 114 127 116 118 0.800 0.762 0.811 0.814 0.798 0.800
0.05 0.90 226 182 220 242 220 223 0.900 0.862 0.910 0.913 0.898 0.899
0.10 0.90 174 140 173 186 169 171 0.901 0.864 0.911 0.913 0.897 0.899

6 0.7 0.8 0.05 0.80 104 91 111 148 140 121 0.779 0.757 0.817 0.850 0.841 0.809
0.10 0.80 76 67 84 108 102 88 0.780 0.765 0.821 0.850 0.839 0.809
0.05 0.90 144 126 163 205 193 167 0.878 0.855 0.918 0.939 0.930 0.906
0.10 0.90 110 97 129 157 148 128 0.879 0.860 0.920 0.938 0.930 0.906

Values not within a prescribed range of 1− β = 0.8 or 0.9, plus or minus 0.03 are highlighted in bold.

ident.: the identity transformation based on equation (3); log: the log transformation based on equation (3); log (2): the log transformation based on

equation (2); log-log: the log transformation based on equation (3); logit: the logit transformation based on equation (3); arcsin: the arcsine square-root

transformation based on equation (3).
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Table S4. Simulation results for power: Weibull(λ, k = 2) survival distribution and no random censoring were assumed.

b S0(t) S1(t) α 1− β
Sample size Empirical power

ident. log log (2) log-log logit arcsin ident. log log (2) log-log logit arcsin
12 0.1 0.2 0.05 0.80 99 52 71 75 59 77 0.861 0.739 0.786 0.761 0.769 0.794

0.10 0.80 73 38 54 55 43 56 0.817 0.660 0.780 0.798 0.784 0.815
0.05 0.90 138 72 106 104 82 107 0.939 0.802 0.921 0.907 0.861 0.884
0.10 0.90 106 55 86 80 63 82 0.921 0.798 0.901 0.900 0.836 0.916

12 0.4 0.5 0.05 0.80 155 125 144 166 151 153 0.789 0.762 0.820 0.803 0.792 0.791
0.10 0.80 113 91 108 121 110 112 0.826 0.735 0.806 0.818 0.804 0.802
0.05 0.90 215 172 208 229 209 212 0.890 0.874 0.906 0.907 0.893 0.904
0.10 0.90 165 132 164 176 160 163 0.894 0.871 0.908 0.924 0.911 0.895

12 0.7 0.8 0.05 0.80 99 87 106 142 134 115 0.755 0.719 0.791 0.857 0.845 0.795
0.10 0.80 73 64 80 103 97 84 0.805 0.803 0.837 0.832 0.851 0.773
0.05 0.90 138 121 155 196 185 160 0.893 0.836 0.931 0.949 0.938 0.898
0.10 0.90 106 93 123 150 142 123 0.899 0.845 0.906 0.934 0.929 0.906

6 0.1 0.2 0.05 0.80 117 61 84 88 70 91 0.833 0.715 0.813 0.783 0.742 0.787
0.10 0.80 85 45 64 64 51 66 0.829 0.716 0.812 0.780 0.739 0.783
0.05 0.90 162 84 126 122 96 126 0.929 0.813 0.917 0.885 0.841 0.889
0.10 0.90 124 65 102 94 74 96 0.926 0.816 0.918 0.885 0.841 0.886

6 0.4 0.5 0.05 0.80 178 143 166 190 173 176 0.800 0.761 0.808 0.815 0.797 0.799
0.10 0.80 130 104 124 139 126 128 0.801 0.761 0.809 0.815 0.797 0.799
0.05 0.90 246 198 240 263 240 243 0.900 0.861 0.911 0.912 0.898 0.899
0.10 0.90 189 152 189 202 184 187 0.900 0.863 0.912 0.912 0.897 0.899

6 0.7 0.8 0.05 0.80 113 99 121 161 151 131 0.779 0.757 0.819 0.851 0.838 0.809
0.10 0.80 82 72 91 117 110 95 0.780 0.760 0.821 0.849 0.837 0.808
0.05 0.90 156 137 176 222 209 181 0.878 0.855 0.917 0.939 0.930 0.905
0.10 0.90 120 105 140 171 161 139 0.880 0.857 0.920 0.938 0.930 0.906

Values not within a prescribed range of 1− β = 0.8 or 0.9, plus or minus 0.03 are highlighted in bold.

ident.: the identity transformation based on equation (3); log: the log transformation based on equation (3); log (2): the log transformation based on

equation (2); log-log: the log transformation based on equation (3); logit: the logit transformation based on equation (3); arcsin: the arcsine square-root

transformation based on equation (3).



S
a

m
p

le
s

iz
e

c
a

lc
u

la
tio

n
s

fo
r

th
e

K
a

p
la

n
–

M
e

ie
r

e
s

tim
a

to
r

—
2

0
/2

2

Table S5. Simulation results for power: exponential survival distribution and random censoring were assumed.

b S0(t) S1(t) α 1− β
Sample size Empirical power

ident. log log (2) log-log logit arcsin ident. log log (2) log-log logit arcsin
12 0.1 0.2 0.05 0.80 129 67 98 97 77 100 0.832 0.713 0.829 0.782 0.740 0.785

0.10 0.80 94 49 75 71 56 73 0.829 0.713 0.827 0.780 0.738 0.783
0.05 0.90 178 93 149 134 106 138 0.928 0.814 0.930 0.884 0.840 0.887
0.10 0.90 137 71 121 103 81 106 0.926 0.813 0.930 0.882 0.839 0.885

12 0.4 0.5 0.05 0.80 171 137 161 183 166 169 0.802 0.761 0.813 0.818 0.798 0.801
0.10 0.80 125 100 121 133 121 123 0.802 0.762 0.815 0.815 0.798 0.800
0.05 0.90 237 190 233 253 230 233 0.901 0.863 0.914 0.915 0.898 0.899
0.10 0.90 182 146 184 194 177 179 0.902 0.865 0.916 0.914 0.899 0.900

12 0.7 0.8 0.05 0.80 102 90 110 146 137 119 0.779 0.762 0.821 0.851 0.839 0.811
0.10 0.80 75 66 83 106 100 87 0.787 0.769 0.822 0.849 0.839 0.814
0.05 0.90 142 124 161 202 190 164 0.880 0.855 0.919 0.940 0.931 0.905
0.10 0.90 109 95 128 155 146 126 0.882 0.856 0.922 0.939 0.930 0.906

6 0.1 0.2 0.05 0.80 145 76 111 109 87 113 0.861 0.747 0.856 0.812 0.773 0.817
0.10 0.80 106 55 86 80 63 82 0.854 0.739 0.854 0.807 0.764 0.809
0.05 0.90 201 105 170 151 120 156 0.946 0.841 0.948 0.906 0.867 0.910
0.10 0.90 154 81 139 116 92 120 0.941 0.839 0.947 0.902 0.863 0.906

6 0.4 0.5 0.05 0.80 188 151 178 201 183 185 0.841 0.801 0.852 0.855 0.839 0.839
0.10 0.80 137 110 133 146 133 135 0.835 0.796 0.847 0.849 0.831 0.833
0.05 0.90 260 209 257 278 253 256 0.928 0.894 0.938 0.939 0.926 0.927
0.10 0.90 199 160 203 213 194 197 0.925 0.891 0.937 0.936 0.923 0.924

6 0.7 0.8 0.05 0.80 111 97 119 158 149 129 0.804 0.781 0.843 0.874 0.864 0.835
0.10 0.80 81 71 90 115 109 94 0.804 0.782 0.843 0.869 0.860 0.832
0.05 0.90 153 134 175 218 206 178 0.897 0.875 0.935 0.952 0.945 0.923
0.10 0.90 118 103 139 168 158 137 0.898 0.876 0.936 0.951 0.943 0.922

Values not within a prescribed range of 1− β = 0.8 or 0.9, plus or minus 0.03 are highlighted in bold.

ident.: the identity transformation based on equation (3); log: the log transformation based on equation (3); log (2): the log transformation based on

equation (2); log-log: the log transformation based on equation (3); logit: the logit transformation based on equation (3); arcsin: the arcsine square-root

transformation based on equation (3).
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Table S6. Simulation results for power: Weibull(λ, k = 0.5) survival distribution and random censoring were assumed.

b S0(t) S1(t) α 1− β
Sample size Empirical power

ident. log log (2) log-log logit arcsin ident. log log (2) log-log logit arcsin
12 0.1 0.2 0.05 0.80 129 67 98 97 77 100 0.832 0.713 0.829 0.782 0.740 0.785

0.10 0.80 94 49 75 71 56 73 0.829 0.713 0.827 0.780 0.738 0.783
0.05 0.90 178 93 149 134 106 138 0.928 0.814 0.930 0.884 0.840 0.887
0.10 0.90 137 71 121 103 81 106 0.926 0.813 0.930 0.882 0.839 0.885

12 0.4 0.5 0.05 0.80 171 137 161 183 166 169 0.802 0.761 0.813 0.818 0.798 0.801
0.10 0.80 125 100 121 133 121 123 0.802 0.762 0.815 0.815 0.798 0.800
0.05 0.90 237 190 233 253 230 233 0.901 0.863 0.914 0.915 0.898 0.899
0.10 0.90 182 146 184 194 177 179 0.902 0.865 0.916 0.914 0.899 0.900

12 0.7 0.8 0.05 0.80 102 90 110 146 137 119 0.779 0.762 0.822 0.851 0.839 0.811
0.10 0.80 75 66 83 106 100 87 0.787 0.769 0.822 0.849 0.839 0.814
0.05 0.90 142 124 161 202 190 164 0.880 0.855 0.919 0.940 0.931 0.905
0.10 0.90 109 95 128 155 146 126 0.882 0.856 0.922 0.939 0.930 0.906

6 0.1 0.2 0.05 0.80 139 73 106 105 83 108 0.848 0.735 0.845 0.802 0.759 0.804
0.10 0.80 101 53 82 76 60 79 0.842 0.731 0.843 0.794 0.752 0.799
0.05 0.90 192 100 162 145 114 149 0.938 0.828 0.941 0.898 0.854 0.900
0.10 0.90 148 77 132 111 88 115 0.936 0.827 0.940 0.893 0.853 0.898

6 0.4 0.5 0.05 0.80 181 145 171 193 176 178 0.825 0.784 0.835 0.839 0.822 0.823
0.10 0.80 132 106 128 141 128 130 0.822 0.782 0.833 0.836 0.817 0.819
0.05 0.90 250 201 247 267 243 247 0.917 0.881 0.928 0.929 0.914 0.916
0.10 0.90 192 154 195 205 187 189 0.915 0.880 0.928 0.926 0.913 0.914

6 0.7 0.8 0.05 0.80 107 94 115 153 144 124 0.793 0.772 0.833 0.865 0.854 0.822
0.10 0.80 78 69 87 111 105 91 0.792 0.773 0.835 0.860 0.851 0.823
0.05 0.90 148 130 169 211 199 172 0.889 0.867 0.929 0.947 0.940 0.916
0.10 0.90 114 100 134 162 153 132 0.890 0.869 0.930 0.945 0.938 0.915

Values not within a prescribed range of 1− β = 0.8 or 0.9, plus or minus 0.03 are highlighted in bold.

ident.: the identity transformation based on equation (3); log: the log transformation based on equation (3); log (2): the log transformation based on

equation (2); log-log: the log transformation based on equation (3); logit: the logit transformation based on equation (3); arcsin: the arcsine square-root

transformation based on equation (3).
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Table S7. Simulation results for power: Weibull(λ, k = 2) survival distribution and random censoring were assumed.

b S0(t) S1(t) α 1− β
Sample size Empirical power

ident. log log (2) log-log logit arcsin ident. log log (2) log-log logit arcsin
12 0.1 0.2 0.05 0.80 129 67 98 97 77 100 0.832 0.713 0.829 0.782 0.740 0.785

0.10 0.80 94 49 75 71 56 73 0.829 0.713 0.827 0.780 0.738 0.783
0.05 0.90 178 93 149 134 106 138 0.928 0.814 0.930 0.884 0.840 0.887
0.10 0.90 137 71 121 103 81 106 0.926 0.813 0.930 0.882 0.839 0.885

12 0.4 0.5 0.05 0.80 171 137 161 183 166 169 0.802 0.761 0.813 0.818 0.798 0.801
0.10 0.80 125 100 121 133 121 123 0.802 0.762 0.815 0.815 0.798 0.800
0.05 0.90 237 190 233 253 230 233 0.901 0.863 0.914 0.915 0.898 0.899
0.10 0.90 182 146 184 194 177 179 0.902 0.865 0.916 0.914 0.899 0.900

12 0.7 0.8 0.05 0.80 102 90 110 146 137 119 0.779 0.762 0.822 0.851 0.839 0.811
0.10 0.80 75 66 83 106 100 87 0.786 0.769 0.822 0.849 0.839 0.814
0.05 0.90 142 124 161 202 190 164 0.880 0.855 0.919 0.940 0.931 0.905
0.10 0.90 109 95 128 155 146 126 0.882 0.856 0.922 0.939 0.930 0.906

6 0.1 0.2 0.05 0.80 153 80 117 115 91 119 0.879 0.765 0.871 0.831 0.789 0.836
0.10 0.80 111 58 90 84 66 87 0.868 0.756 0.866 0.822 0.779 0.827
0.05 0.90 211 110 178 159 126 164 0.955 0.856 0.956 0.919 0.882 0.923
0.10 0.90 162 85 145 122 97 126 0.951 0.853 0.954 0.913 0.877 0.917

6 0.4 0.5 0.05 0.80 197 159 187 211 192 195 0.863 0.825 0.872 0.877 0.860 0.862
0.10 0.80 144 116 140 154 140 142 0.855 0.818 0.866 0.868 0.852 0.854
0.05 0.90 273 219 270 292 266 269 0.943 0.911 0.951 0.952 0.940 0.941
0.10 0.90 210 168 213 224 204 207 0.939 0.906 0.949 0.948 0.936 0.937

6 0.7 0.8 0.05 0.80 116 102 125 165 156 135 0.818 0.797 0.856 0.886 0.877 0.849
0.10 0.80 85 74 95 121 114 98 0.817 0.793 0.856 0.882 0.872 0.842
0.05 0.90 161 141 184 229 216 187 0.909 0.888 0.944 0.960 0.953 0.934
0.10 0.90 123 108 146 176 166 143 0.907 0.886 0.944 0.957 0.951 0.930

Values not within a prescribed range of 1− β = 0.8 or 0.9, plus or minus 0.03 are highlighted in bold.

ident.: the identity transformation based on equation (3); log: the log transformation based on equation (3); log (2): the log transformation based on

equation (2); log-log: the log transformation based on equation (3); logit: the logit transformation based on equation (3); arcsin: the arcsine square-root

transformation based on equation (3).
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